University of Colorado Boulder
Introduction to Deep Learning

Gain next-level skills with Coursera Plus for $199 (regularly $399). Save now.

University of Colorado Boulder

Introduction to Deep Learning

Daniel E. Acuna

Instructor: Daniel E. Acuna

Included with Coursera Plus

Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

2 weeks to complete
at 10 hours a week
Flexible schedule
Learn at your own pace
Gain insight into a topic and learn the fundamentals.
Intermediate level

Recommended experience

2 weeks to complete
at 10 hours a week
Flexible schedule
Learn at your own pace

What you'll learn

  • Explain the mathematical foundations of neural networks and how they learn from data.

  • Train and regularize deep neural networks for effective generalization.

  • Design and apply specialized neural network architectures for images and sequences.

  • Apply transformer-based and multimodal models to real-world scenarios.

Details to know

Shareable certificate

Add to your LinkedIn profile

Recently updated!

January 2026

Assessments

6 assignments

Taught in English

See how employees at top companies are mastering in-demand skills

 logos of Petrobras, TATA, Danone, Capgemini, P&G and L'Oreal

Build your subject-matter expertise

This course is part of the Machine Learning: Theory and Hands-on Practice with Python Specialization
When you enroll in this course, you'll also be enrolled in this Specialization.
  • Learn new concepts from industry experts
  • Gain a foundational understanding of a subject or tool
  • Develop job-relevant skills with hands-on projects
  • Earn a shareable career certificate

There are 5 modules in this course

Welcome to Introduction to Deep Learning. This module builds the mathematical foundations of neural networks. Starting from linear models, you will learn about the artificial neuron and develop the mathematics of gradient descent and backpropagation. The focus is on understanding how and why neural networks work through the underlying math—covering the forward pass, loss functions, and the chain rule to show how information flows through networks and how they learn from data.

What's included

15 videos5 readings2 assignments1 programming assignment

This module focuses on training neural networks effectively. Topics include optimization algorithms, hyperparameter tuning, and regularization techniques to prevent overfitting and achieve good generalization. You will compare different optimizers like SGD, momentum, and Adam, understand how learning rate and batch size affect training dynamics, and apply weight decay, dropout, early stopping, and batch normalization.

What's included

7 videos2 readings1 assignment1 programming assignment

This module introduces you to convolutional neural networks (CNNs), the foundation of modern computer vision. Topics include how convolutional and pooling layers work, CNN architecture design, and practical techniques like data augmentation and transfer learning. The module covers classic architectures like VGG and ResNet and explains why CNNs outperform fully-connected networks on image data.

What's included

7 videos2 readings1 assignment1 programming assignment

This module covers sequence modeling, starting with recurrent neural networks (RNNs) and long short-term memory networks (LSTMs), then progressing to the attention mechanism—the key innovation that led to transformers. Topics include how RNNs maintain hidden states across time steps, why the vanishing gradient problem motivated LSTMs, and how attention allows models to focus on relevant parts of their input.

What's included

7 videos1 reading1 assignment1 programming assignment

This final module covers the transformer architecture, which has revolutionized deep learning across domains. Topics include BERT and GPT as encoder-only and decoder-only variants, Vision Transformers (ViT) that apply attention to images, and CLIP for multimodal learning connecting vision and language. The module emphasizes applying pre-trained models to real tasks.

What's included

8 videos1 reading1 assignment1 programming assignment

Earn a career certificate

Add this credential to your LinkedIn profile, resume, or CV. Share it on social media and in your performance review.

Instructor

Daniel E. Acuna
University of Colorado Boulder
3 Courses62 learners

Offered by

Why people choose Coursera for their career

Felipe M.
Learner since 2018
"To be able to take courses at my own pace and rhythm has been an amazing experience. I can learn whenever it fits my schedule and mood."
Jennifer J.
Learner since 2020
"I directly applied the concepts and skills I learned from my courses to an exciting new project at work."
Larry W.
Learner since 2021
"When I need courses on topics that my university doesn't offer, Coursera is one of the best places to go."
Chaitanya A.
"Learning isn't just about being better at your job: it's so much more than that. Coursera allows me to learn without limits."

Frequently asked questions